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Introduction: Node.js JavaScript Runtime
Node.js is widely used for server-side, desktop, and IoT development
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npm: Ecosystem of 1 million+ packages developers can use



Node.js is Popular for Attackers Too
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https://www.theregister.com/2018/05/14/electron_xss_vulnerability_cve_2018_1000136/ https://portswigger.net/daily-swig/github-security-team-finds-remote-code-execution-bug-in-popular-node-js-changelog-library

https://arstechnica.com/information-technology/2021/09/npm-package-with-3-million-weekly-downloads-had-a-severe-vulnerability/ hGps://www.theregister.com/2019/06/07/komodo_npm_wallets/

Node.js package vulnerabilities in the news



Background: Node.js Package Attacker Model
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PA

Dep 1 Dep 2

Dep 3 Dep 4 Dep 5

Dep 6

Parent applica6on (PA) includes a vulnerable 
dependency (Dep 6)

PA has an unsanitized dataflow 
(heavy red arrows) to Dep 6  

Dep 6 accesses privileged Node.js API (exec)  

Attack:  1) Submits exploit to PA

Arbitrary Code Execu1on (ACE; CWE-94)
Arbitrary Command Injec1on (ACI; CWE-88)

2) PA passes exploit to Dep 6 3) Dep 6 passes exploit to exec

<exploit>

exec(<exploit>)

From npm



Background: Node.js Package Attacker Model
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PA

Dep 1 Dep 2

Dep 3 Dep 4 Dep 5

Dep 6

exec(<exploit>)

Prior work detects these flows
with dynamic taint analysis

[1] François Gauthier, Behnaz Hassanshahi, and Alexander Jordan. AFFOGATO: RunAme 
detecAon of injecAon aTacks for Node.js. In ISSTA/ECOOP Workshops, 2018.

[2] R. Karim, F. Tip, A. Sochurkova, and K. Sen. Pla[orm-Independent Dynamic Taint 
Analysis for JavaScript. IEEE Transac5ons on So6ware Engineering (TSE), 2018. 

Challenge: Average package has 79 dependencies to be checked [Zimmerman 2019]



Challenges for Node.js Package Dynamic Taint Analysis

1. Driving package APIs

2. Precise analysis of built-in datatypes 

3. Scaling to large dependency trees

4. Triage of tainted flows

5. Confirmation of tainted flows
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End-to-End Analysis
Infrastructure

Provenance Graphs



AugmenEng Taint Analysis with Provenance Graphs
Provenance Tracking
◦Prior: Policy-based taint propagaHon 
◦+ Graph of operaHons performed

Founda'on for further analysis:
◦Exploit synthesis (covered later)
◦Triage (see paper)
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Tainted 
Input

Constants

Package 
Opera=ons

Sink

Provenance graph 
output of NodeMedic



NodeMedic End-to-End Analysis Infrastructure (1/2)
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Provenance Tracking 
Instrumentation

Provenance
Graph

Vulnerable 
Flows

Node.js 
Program

Driver 
Generation

Provenance
Precision 
Tuning

Instrumented
Node.js
Program

Tuned
Instrumented

Node.js
Program

Node.js

Package
Dependency Tree

⟺Package
Driver

Challenges: 1) Driving package APIs  2) Precise analysis  3) Scalable analysis



NodeMedic End-to-End Analysis Infrastructure (2/2)
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Provenance Tracking 
Instrumentation

Provenance
Graph
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Driver 
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Provenance
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Tuning

Instrumented
Node.js
Program

Tuned
Instrumented

Node.js
Program

Node.js

Package
Dependency Tree

⟺Package
Driver

Exploit 
Synthesis

Exploit Success
or Failure

Triage
Model

Exploitability
Rating

Node.js
Candidate

Exploit

Challenges: 4, 5) Reduce analyst triage burden



Solution: Scalable Analysis of Large Dependency Trees
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Mo4va4on: Packages avg 79 deps

Insight: Not every dependency needs 
precise analysis; deeper deps. don’t add  
flows but increase overhead

Algorithm: Mark, based on a package’s 
depth in tree, whether to analyze
precisely or imprecisely

Tuning: Analyst-controllable 
parameters w.r.t. tree size & depth

Dep 6 Dep 7

Dep 9 Dep 10 Dep 11

Dep 8

PA

Dep 2

Dep 3 Dep 4 Dep 5

Dep 1

Dep 6 Dep 7 Dep 8

Dep 9 Dep 10 Dep 11



Solution: Reducing Analyst Triage Burden (1/2)
Mo<va<on: Analyst must manually confirm reported tainted flows
◦ Confirm: Construct a proof-of-concept (PoC) exploit
◦ Reduces analysis scalability
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Insight: Provenance graph contains operaHons performed on tainted value

1 function grep(inpt) {
2     exec(‘grep ’ + inpt);
3 }

(1) call:exec
'grep tainted'

(2) string.concat
'grep tainted'

(3) Untainted
[String: 'grep ']

(5) call:grep
'tainted'

(6) Tainted
[String: 'tainted']

(7) call:__set_taint__
'tainted'

(8) Untainted
[String: 'tainted']

(1) call:exec
'grep tainted'

(2) string.concat
'grep tainted'

(3) Untainted
[String: 'grep ']

(5) call:grep
'tainted'

(6) Tainted
[String: 'tainted']

(7) call:__set_taint__
'tainted'

(8) Untainted
[String: 'tainted']

1 __set_taint__(‘tainted’);
2 grep(‘tainted’);

Package API

Driver Code



SoluEon: Reducing Analyst Triage Burden (2/2)
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① Provenance graph → SMT formula encoding opera6ons and PoC
1 (declare-const i0 String)
2 (assert (str.contains
3     (str.++ 
4         “grep ” i0
5     ) 
6    “ $(touch success);#”
7 ))

② Solve with Z3 and derive model if SAT 1 (i0 “ $(touch success);#”)

③ Rerun package with candidate PoC grep(“ $(touch success);#”);

④ Check for PoC success

success

(1) call:exec
'grep tainted'

(2) string.concat
'grep tainted'

(3) Untainted
[String: 'grep ']

(5) call:grep
'tainted'

(6) Tainted
[String: 'tainted']

(7) call:__set_taint__
'tainted'

(8) Untainted
[String: 'tainted']

(1) call:exec
'grep tainted'

(2) string.concat
'grep tainted'

(3) Untainted
[String: 'grep ']

(5) call:grep
'tainted'

(6) Tainted
[String: 'tainted']

(7) call:__set_taint__
'tainted'

(8) Untainted
[String: 'tainted']



Results: Large-Scale Evaluation on Real Node.js Packages
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Package Results Count
Inherent package issues 394

Package analysis timeout 258

No tainted flows 9175

Tainted flows 173

Type Count Confirmed Percent
Arbitrary command injection (ACI) 133 102 76%

Arbitrary code execution (ACE) 22 6 27%

Total 155 108 70%

Result: Able to automatically confirm 108 potential flows

Result: Scalable analysis of 10,000 
packages from npm

Prior work: ~20 packages [1, 2]



More in the Paper and our Repository

→ In the paper:

o Precise provenance analysis

o Custom propagation policies

o Triage rating methodology

→ github.com/NodeMedicAnalysis

o End-to-end infrastructure

o 589 taint precision tests

o Case studies
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http://github.com/NodeMedicAnalysis

