
NodeMedic: End-to-End Analysis
of Node.js Vulnerabili:es
with Provenance Graphs

Darion Cassel, Wai Tuck Wong, Limin Jia

Introduction: Node.js JavaScript Runtime
Node.js is widely used for server-side, desktop, and IoT development

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs 2

npm: Ecosystem of 1 million+ packages developers can use

Node.js is Popular for Attackers Too

NodeMedic: End-to-End Analysis of Node.js VulnerabiliAes with Provenance Graphs 3

https://www.theregister.com/2018/05/14/electron_xss_vulnerability_cve_2018_1000136/ https://portswigger.net/daily-swig/github-security-team-finds-remote-code-execution-bug-in-popular-node-js-changelog-library

https://arstechnica.com/information-technology/2021/09/npm-package-with-3-million-weekly-downloads-had-a-severe-vulnerability/ hGps://www.theregister.com/2019/06/07/komodo_npm_wallets/

Node.js package vulnerabilities in the news

Background: Node.js Package Attacker Model

NodeMedic: End-to-End Analysis of Node.js VulnerabiliAes with Provenance Graphs 4

PA

Dep 1 Dep 2

Dep 3 Dep 4 Dep 5

Dep 6

Parent applica6on (PA) includes a vulnerable
dependency (Dep 6)

PA has an unsanitized dataflow
(heavy red arrows) to Dep 6

Dep 6 accesses privileged Node.js API (exec)

Attack: 1) Submits exploit to PA

Arbitrary Code Execu1on (ACE; CWE-94)
Arbitrary Command Injec1on (ACI; CWE-88)

2) PA passes exploit to Dep 6 3) Dep 6 passes exploit to exec

<exploit>

exec(<exploit>)

From npm

Background: Node.js Package Attacker Model

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs 5

PA

Dep 1 Dep 2

Dep 3 Dep 4 Dep 5

Dep 6

exec(<exploit>)

Prior work detects these flows
with dynamic taint analysis

[1] François Gauthier, Behnaz Hassanshahi, and Alexander Jordan. AFFOGATO: RunAme
detecAon of injecAon aTacks for Node.js. In ISSTA/ECOOP Workshops, 2018.

[2] R. Karim, F. Tip, A. Sochurkova, and K. Sen. Pla[orm-Independent Dynamic Taint
Analysis for JavaScript. IEEE Transac5ons on So6ware Engineering (TSE), 2018.

Challenge: Average package has 79 dependencies to be checked [Zimmerman 2019]

Challenges for Node.js Package Dynamic Taint Analysis

1. Driving package APIs

2. Precise analysis of built-in datatypes

3. Scaling to large dependency trees

4. Triage of tainted flows

5. Confirmation of tainted flows

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs 6

End-to-End Analysis
Infrastructure

Provenance Graphs

AugmenEng Taint Analysis with Provenance Graphs
Provenance Tracking
◦Prior: Policy-based taint propagaHon
◦+ Graph of operaHons performed

Founda'on for further analysis:
◦Exploit synthesis (covered later)
◦Triage (see paper)

NodeMedic: End-to-End Analysis of Node.js VulnerabiliAes with Provenance Graphs 7

Tainted
Input

Constants

Package
Opera=ons

Sink

Provenance graph
output of NodeMedic

NodeMedic End-to-End Analysis Infrastructure (1/2)

NodeMedic: End-to-End Analysis of Node.js VulnerabiliAes with Provenance Graphs 8

Provenance Tracking
Instrumentation

Provenance
Graph

Vulnerable
Flows

Node.js
Program

Driver
Generation

Provenance
Precision
Tuning

Instrumented
Node.js
Program

Tuned
Instrumented

Node.js
Program

Node.js

Package
Dependency Tree

⟺Package
Driver

Challenges: 1) Driving package APIs 2) Precise analysis 3) Scalable analysis

NodeMedic End-to-End Analysis Infrastructure (2/2)

NodeMedic: End-to-End Analysis of Node.js VulnerabiliAes with Provenance Graphs 9

Provenance Tracking
Instrumentation

Provenance
Graph

Vulnerable
Flows

Node.js
Program

Driver
Generation

Provenance
Precision
Tuning

Instrumented
Node.js
Program

Tuned
Instrumented

Node.js
Program

Node.js

Package
Dependency Tree

⟺Package
Driver

Exploit
Synthesis

Exploit Success
or Failure

Triage
Model

Exploitability
Rating

Node.js
Candidate

Exploit

Challenges: 4, 5) Reduce analyst triage burden

Solution: Scalable Analysis of Large Dependency Trees

NodeMedic: End-to-End Analysis of Node.js VulnerabiliAes with Provenance Graphs 10

Mo4va4on: Packages avg 79 deps

Insight: Not every dependency needs
precise analysis; deeper deps. don’t add
flows but increase overhead

Algorithm: Mark, based on a package’s
depth in tree, whether to analyze
precisely or imprecisely

Tuning: Analyst-controllable
parameters w.r.t. tree size & depth

Dep 6 Dep 7

Dep 9 Dep 10 Dep 11

Dep 8

PA

Dep 2

Dep 3 Dep 4 Dep 5

Dep 1

Dep 6 Dep 7 Dep 8

Dep 9 Dep 10 Dep 11

Solution: Reducing Analyst Triage Burden (1/2)
Mo<va<on: Analyst must manually confirm reported tainted flows
◦ Confirm: Construct a proof-of-concept (PoC) exploit
◦ Reduces analysis scalability

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs 11

Insight: Provenance graph contains operaHons performed on tainted value

1 function grep(inpt) {
2 exec(‘grep ’ + inpt);
3 }

(1) call:exec
'grep tainted'

(2) string.concat
'grep tainted'

(3) Untainted
[String: 'grep ']

(5) call:grep
'tainted'

(6) Tainted
[String: 'tainted']

(7) call:__set_taint__
'tainted'

(8) Untainted
[String: 'tainted']

(1) call:exec
'grep tainted'

(2) string.concat
'grep tainted'

(3) Untainted
[String: 'grep ']

(5) call:grep
'tainted'

(6) Tainted
[String: 'tainted']

(7) call:__set_taint__
'tainted'

(8) Untainted
[String: 'tainted']

1 __set_taint__(‘tainted’);
2 grep(‘tainted’);

Package API

Driver Code

SoluEon: Reducing Analyst Triage Burden (2/2)

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs 12

① Provenance graph → SMT formula encoding opera6ons and PoC
1 (declare-const i0 String)
2 (assert (str.contains
3 (str.++
4 “grep ” i0
5)
6 “ $(touch success);#”
7))

② Solve with Z3 and derive model if SAT 1 (i0 “ $(touch success);#”)

③ Rerun package with candidate PoC grep(“ $(touch success);#”);

④ Check for PoC success

success

(1) call:exec
'grep tainted'

(2) string.concat
'grep tainted'

(3) Untainted
[String: 'grep ']

(5) call:grep
'tainted'

(6) Tainted
[String: 'tainted']

(7) call:__set_taint__
'tainted'

(8) Untainted
[String: 'tainted']

(1) call:exec
'grep tainted'

(2) string.concat
'grep tainted'

(3) Untainted
[String: 'grep ']

(5) call:grep
'tainted'

(6) Tainted
[String: 'tainted']

(7) call:__set_taint__
'tainted'

(8) Untainted
[String: 'tainted']

Results: Large-Scale Evaluation on Real Node.js Packages

NodeMedic: End-to-End Analysis of Node.js VulnerabiliAes with Provenance Graphs 13

Package Results Count
Inherent package issues 394

Package analysis timeout 258

No tainted flows 9175

Tainted flows 173

Type Count Confirmed Percent
Arbitrary command injection (ACI) 133 102 76%

Arbitrary code execution (ACE) 22 6 27%

Total 155 108 70%

Result: Able to automatically confirm 108 potential flows

Result: Scalable analysis of 10,000
packages from npm

Prior work: ~20 packages [1, 2]

More in the Paper and our Repository

→ In the paper:

o Precise provenance analysis

o Custom propagation policies

o Triage rating methodology

→ github.com/NodeMedicAnalysis

o End-to-end infrastructure

o 589 taint precision tests

o Case studies

NodeMedic: End-to-End Analysis of Node.js VulnerabiliAes with Provenance Graphs 14

http://github.com/NodeMedicAnalysis

