COMPREHENSIVELY ANALYZING THE IMPACT OF CYBERATTACKS ON POWER GRIDS

LENNART BADERMARTIN SERROROLAV LAMBERTSÖMER SENDENNIS VAN DER VELDEIMMANUEL HACKERJULIAN FILTERELMAR PADILLAMARTIN HENZE

🗾 Fraunhofer

FKIE

https://github.com/fkie-cad/wattson

lennart.bader@fkie.fraunhofer.de

© Fraunhofer FKIE

2

This graphic uses resources from flaticon.com

© Fraunhofer FKIE

3

This graphic uses resources from flaticon.com

© Fraunhofer FKIE

This graphic uses resources from flaticon.com

© Fraunhofer FKIE

5

This graphic uses resources from flaticon.com

© Fraunhofer FKIE

6

lennart.bader@fkie.fraunhofer.de

© Fraunhofer FKIE

lennart.bader@fkie.fraunhofer.de

© Fraunhofer FKIE

This graphic uses resources from flaticon.com

lennart.bader@fkie.fraunhofer.de

9

lennart.bader@fkie.fraunhofer.de

Compelling targetCritical infrastructurePhysical consequences

Compelling targetCritical infrastructurePhysical consequences

Physical access
Unmanned facilities

- Geographic scale
- Multiple actors

Compelling targetCritical infrastructurePhysical consequences

Physical access

Unmanned facilities

- Geographic scale
- Multiple actors

Limited security

- Encryption, authentication
- Network segmentation

Compelling target
Critical infrastructure
Physical consequences

Physical accessUnmanned facilities

- Geographic scale
- Multiple actors

Limited security

- Encryption, authentication
- Network segmentation

Multiple attack types in related work

- Demand manipulation
- Denial of service
- Control command issuance

	Attack Type	ICT	Power Grid
Phys.	Device Disconnect		[36], [91]
	Demand Manipulation		[37], [90] [89], [103]
Syn.	Denial-of-Service	[3], [13], [66] [108], [92]	[92] , [2], [30] [33], [56], [109]
	Replay —	[51], [62], [107]	[39], [109], [112]
Sem.		[79]	[2], [39], [99]
	False Data Injectior	[13], [43], [45] [44], [51], [102]	[2], [19], [56], [77] [17], [47], [61], [111] [24], [41], [54], [85]

Compelling target Critical infrastructure Physical consequences

Physical access Unmanned facilities

- Geographic scale
- Multiple actors

Limited security

- Encryption, authentication
- Network segmentation ٠

Multiple attack types in related work

- Demand manipulation
- Denial of service
- Control command issuance

Isolated evaluations

- Mostly focus on one attack type / class
- Mostly considering only one domain (power grid or network)

	Attack Type	ICT	Power Grid
Phys.	Device Disconnect		[36], [91]
	Demand Manipulation		[37], [90] [89], [103]
Syn.	Denial-of-Service	[3], [13], [66] [108], [92]	[92] , [2], [30] [33], [56], [109]
	Replay –	[51], [62], [107]	[39], [109], [112]
Sem.		[79]	[2], [39], [99]
	False Data Injectio	n [13], [43], [45] n [44], [51], [102]	[2], [19], [56], [77] [17], [47], [61], [111] [24], [41], [54], [85]

Compelling target Critical infrastructure Physical consequences

Physical access Unmanned facilities

- Geographic scale
- Multiple actors

Attack Type

Limited security

Encryption, authentication

Power Grid

Network segmentation Ö

Multiple attack types in related work

- Demand manipulation
- Denial of service
- Control command issuance

Isolated evaluations

- Mostly focus on one attack type / class
- Mostly considering only one domain (power grid or network)

Sophisticated cross-domain evaluations of effects of cyberattacks missing

Phys.	Device Disconnect		[36], [91]
	Demand Manipulation		[37], [90] [89], [103]
Syn.	Denial-of-Service	[3], [13], [66] [108], [92]	[92] , [2], [30] [33], [56], [109]
	Replay –	[51], [62], [107]	[39], [109], [112]
Sem.		[79]	[2], [39], [99]
	False Data Injection [13], [43], [45] [44], [51], [102]		[2], [19], [56], [77] [17], [47], [61], [111 [24], [41], [54], [85]

ICT

💹 Fraunhofei

The real power grid

Maximum realism +

- Risky
- Expensive
- Infeasible -

The real power grid \int_{a}^{b}

- Risky
- Expensive
- Infeasible

- + Great realism
- Real devices
- Limited scalability
- Inflexible topologies

- Costly

- + Good realism
- + Scenarios flexibility
- + Scalability
- Realism depends on model
- Abstraction

The real power grid \int_{a}^{b}

+ Maximum realism

- Risky
- Expensive
- Infeasible

Laboratory setups

- + Great realism
- Real devices
- Limited scalability
- Inflexible topologies
- Costly

- + Good realism
- + Scenarios flexibility
- + Scalability
- Realism depends on model
- Abstraction

The real power grid

+ Maximum realism

- Risky

- Expensive
- Infeasible

Laboratory setups

- + Great realism
- + Real devices
- Limited scalability
- Inflexible topologies
- Costly

- Good realism
- Scenarios flexibility
- + Scalability
- Realism depends on model
- Abstraction

Existing simulation environments

- Often specific focus / use case
 - No real network traffic
 - Insufficient accuracy (for one domain)
 - Limited scalability
- Usage of proprietary hard- or software
 - Limited availability

The real power grid

Maximum realism +

Risky

- Expensive
- Infeasible

- Great realism
- **Real devices**
- Limited scalability
- Inflexible topologies
- Costly

Simulations

- Good realism
- Scenarios flexibility
- **Scalability**
- Realism depends on model
- Abstraction

Existing simulation environments

- Often specific focus / use case
 - No real network traffic
 - Insufficient accuracy (for one domain)
 - Limited scalability
- Usage of proprietary hard- or software
 - Limited availability

Our proposal

- **Open source** ٠
- Co-simulation environment
- Cybersecurity focus

- Network emulation Containernet-based
 - Realistic network traffic down to Layer 2

• Network emulation Containernet-based

- Realistic network traffic down to Layer 2
- Power grid simulation Pandapower-based
 - Static on-demand power flow computation

Network emulation Con

Containernet-based

- Realistic network traffic down to Layer 2
- Power grid simulation Pandapower-based
 - Static on-demand power flow computation

Network emulation Cor

Containernet-based

- Realistic network traffic down to Layer 2
- Power grid simulation Pandapower-based
 - Static on-demand power flow computation

Transparent coordination

Interactions between ICT and grid components

SPICe

25 © Fraunhofer FKIE

- Network emulation co
 - Containernet-based
 - Realistic network traffic down to Layer 2
- Power grid simulation Pandapower-based
 - Static on-demand power flow computation

- Transparent coordination
 - Interactions between ICT and grid components
- Cybersecurity research utilities
 - Attacks, analyses, configurations

© Fraunhofer FKIE

https://github.com/fkie-cad/wattson

- Network emulation Containernet-based
 - Realistic network traffic down to Layer 2
- Power grid simulation Pandapower-based
 - Static on-demand power flow computation

Transparent coordination

- Interactions between ICT and grid components
- Cybersecurity research utilities
 - Attacks, analyses, configurations

Validation against laboratory grid at RWTH Aachen Univ.

Lennart Bader lennart.bader@fkie.fraunhofer.de

Fraunhofer

- Recreate laboratory topology and scenario in Wattson
 - Normal behavior
 - MitM-based attack
 - Compare laboratory and simulation

© Martin Braun

- Recreate laboratory topology and scenario in Wattson
 - Normal behavior
 - MitM-based attack
 - Compare laboratory and simulation

Accurately matching behavior under normal and attack conditions

© Martin Braun

- Recreate laboratory topology and scenario in Wattson
 - Normal behavior
 - MitM-based attack
 - Compare laboratory and simulation

Accurately matching behavior under normal and attack conditions

© Martin Braun

Scalability

- We evaluated Wattson's scalability with synthetic and reference power grid topologies
- Suitable performance for evaluating cyberattacks
- Scales to realistic grid sizes

🖉 Fraunhofer

Destruction of equipment

0101 Interference with **0011** network traffic

Manipulation of application layer traffic

Destruction of equipment

0101 Interference with **0011** network traffic

Manipulation of application layer traffic

Physical Attack

- Destruction of substation
 - Power grid assets
 - ICT equipment

Destruction of equipment

Physical Attack

- Destruction of substation
 - Power grid assets
 - ICT equipment

0101 Interference with **0011** network traffic

Flooding

- TCP SYN flooding
- Affects multiple RTUs
- Saturation of network links

ARP Spoofing

- Targeted denial of service
- Interrupt RTU connections
- Loss of visibility
- Loss of controllability

Manipulation of application layer traffic

Destruction of equipment

Physical Attack

- Destruction of substation
 - Power grid assets
 - ICT equipment

0101 Interference with **0011** network traffic

Flooding

- TCP SYN flooding
- Affects multiple RTUs
- Saturation of network links

ARP Spoofing

- Targeted denial of service
- Interrupt RTU connections
- Loss of visibility
- Loss of controllability

Manipulation of application layer traffic

Industroyer

- Secondary IEC 104 client
- Issues control commands
- Disconnects large parts of the power grid

False Data Injection

- MitM-based attack
- Measurements manipulation
- Command injection
- Live and transparent

Destruction of equipment

Physical Attack

- Destruction of substation
 - Power grid assets
 - ICT equipment

0101 Interference with **0011** network traffic

Flooding

- TCP SYN flooding
- Affects multiple RTUs
- Saturation of network links

Manipulation of application layer traffic

Industroyer

- Secondary IEC 104 client
- Issues control commands
- Disconnects large parts of the power grid

ARP Spoofing

- Targeted denial of service
- Interrupt RTU connections
- Loss of visibility
- Loss of controllability

False Data Injection

- MitM-based attack
- Measurements manipulation
- Command injection
- Live and transparent

Simbench semi-urban medium-voltage scenario ~ 110 substations, 119 RTUs Represents a district

This graphic uses resources from flaticon.com

Simbench semi-urban medium-voltage scenario ~ 110 substations, 119 RTUs Represents a district

🗾 Fraunhofer

This graphic uses resources from flaticon.com

Simbench semi-urban medium-voltage scenario ~ 110 substations, 119 RTUs Represents a district

This graphic uses resources from flaticon.com

Simbench semi-urban medium-voltage scenario ~ 110 substations, 119 RTUs Represents a district

40 © Fraunhofer FKIE

This graphic uses resources from flaticon.com

Simbench semi-urban medium-voltage scenario ~ 110 substations, 119 RTUs Represents a district

This graphic uses resources from flaticon.com

Lennart Bader lennart.bader@fkie.fraunhofer.de

FKIE

	Attack Phases MitM via ARP spoof Learn SEQ/ACK (TCP) and SSN/RSN (IEC 104) 	₩ N	
	 Eavesdropping & recording Learn measurement values & store his 	even even even even even even even even	
	 Command Injection Inject control commands into active connection 		
*	 Freezing Manipulate measurements to represent former grid state 	**	Simbench semi-urban medium-voltage scenario ~ 110 substations, 119 RTUs Represents a district

42

© Fraunhofer FKIE

This graphic uses resources from flaticon.com

False Data Injection Attack: Evaluation

This graphic uses resources from flaticon.com

lennart.bader@fkie.fraunhofer.de

Lennart Bader

43 © Fraunhofer FKIE

False Data Injection Attack: Evaluation

44

© Fraunhofer FKIE

This graphic uses resources from flaticon.com

False Data Injection Attack: Evaluation

Relative Timestamp (s)

Lennart Bader lennart.bader@fkie.fraunhofer.de

45

© Fraunhofer FKIE

This graphic uses resources from flaticon.com

46

© Fraunhofer FKIE

er FKIE This graphic uses resources from flaticon.com

FKIE This graphic uses resources from flaticon.com

IE This graphic uses resources from flaticon.com

lennart.bader@fkie.fraunhofer.de

This graphic uses resources from flaticon.com

lennart.bader@fkie.fraunhofer.de

This graphic uses resources from flaticon.com

lennart.bader@fkie.fraunhofer.de

This graphic uses resources from flaticon.com

lennart.bader@fkie.fraunhofer.de

This graphic uses resources from flaticon.com

lennart.bader@fkie.fraunhofer.de

Power grids as targets for cyberattacks

Digitized cyber physical system and critical infrastructure

Power grids as targets for cyberattacks

- Digitized cyber physical system and critical infrastructure
- Evaluation of attacks and their effects
 - Co-simulation framework
 - Cybersecurity research focus
 - Evaluated attacks highlight potential vulnerabilities

https://github.com/fkie-cad/wattson

Power grids as targets for cyberattacks

Digitized cyber physical system and critical infrastructure

Evaluation of attacks and their effects

- Co-simulation framework
- Cybersecurity research focus
- Evaluated attacks highlight potential vulnerabilities

Various applications for Wattson

https://github.com/fkie-cad/wattson

55 © Fraunhofer FKIE

Power grids as targets for cyberattacks

Digitized cyber physical system and critical infrastructure

Evaluation of attacks and their effects

- Co-simulation framework
- Cybersecurity research focus
- Evaluated attacks highlight potential vulnerabilities

Various applications for Wattson •

WATT

lennart.bader@fkie.fraunhofer.de

COMPREHENSIVELY ANALYZING THE IMPACT OF CYBERATTACKS ON POWER GRIDS

LENNART BADERMARTIN SERROROLAV LAMBERTSÖMER SENDENNIS VAN DER VELDEIMMANUEL HACKERJULIAN FILTERELMAR PADILLAMARTIN HENZE

🗾 Fraunhofer

FKIE

https://github.com/fkie-cad/wattson

lennart.bader@fkie.fraunhofer.de

Attacks from Related Work

Physic	cal 🐳	SyntacticOIOOOOOComplexity	Semantic .				
Destruction of equipment Influencing the physical process		Interference with network traffic e.g., Flooding, ARP Spoofing,	Manipulation of application layer traffic Issuance of control commands Manipulating measurements or commands				
	Attack type	ICT considered	Power grid considered				
Physical	Device disconnect		[HR19A], [SZ17]				
	Demand manipulation		[HCB19], [SMP18], [SGB19], [WPL+19]				
Syntactic	Denial of service [AVN12], [CCC12], [MAC+11], [ZG12], [SK15]		[SK15] , [AMD+18], [HYJ16], [HR19B], [LDS+12], [ZHW+22]				
	Deploy	[LLZ+14], [LCG+16], [WZ11]	[IN17], [ZHW+22], [ZWY16]				
Semantic	Керіау	[PR21]	[AMD+18], [IN17], [TSL13]				
	False data injection	[CCC12], [KT13], [KP11], [KTT14], [LLZ+14], [WCM+20]	[AMD+18], [DYS+20], [LDS+12], [PTL+17], [D19], [KJT+11], [LNR11], [ZGD+13], [GLS+21], [JLJ19], [LZL+17], [RB15]				

Com.	Power	Approaches	Accuracy		Scalability		Flexibility		Cybersecurity		Open
Model	Model		Com.	Power	Com.	Power	Com.	Power	Com.	Power	Source
Discrete	Steady	[9], [76]									1
		[19], [18]		*		*					
		[66]		*		*					
		[11], [25], [28], [63], [69]		*		*					1
	Transient	[4], [10], [26], [35], [52], [55], [86], [100]		?		■*					
		[16], [32], [42], [74], [75]		?		*					1
		[56], [57], [77]		□*							
Continuous	Steady	[30], [31]				*		*	*		1
		[53]					*	*			1
	Transient	[2]	*		*	*	*	*			
Continuous	Steady	WATTSON									1
Requirement not \Box , marginally \Box , mostly \Box , or thoroughly \blacksquare fulfilled $* -$ Not evaluated by authors / uncertain ? - Unknow								– Unknown			

Lennart Bader

Recreate laboratory topology and scenario in Wattson

Normal behavior and attack

Compare laboratory and simulation

- Network communication
- Power grid components

Malicious control commands ×

Benchmarking grids

Linear scaling of all aspects

Reference grids

Realistic grids from literature

Metrics

- Network delay
- Power grid simulation
- Coordination overhead

FKIE

🗾 Fraunhofer

Wattson's Scalability for Different Scenarios (Mean and 98% Confidence Interval)

Lennart Bader lennart.bader@fkie.fraunhofer.de

Destruction of assets

- Substation
 - Lines / Switches / Bus
- Network equipment
 - Switch(es), RTU
- Measurements missing
 - No new measurements arrive
- State estimation detects fault
 - Based on measurements from other substations

Lennart Bader lennart.bader@fkie.fraunhofer.de 💹 Fraunhofer

Syntactic Attacks: Scenario

Lennart Bader

Effects of ARP Spoofing Attack at RTU T1

Semantic Attack: Industroyer

Semantic Attack: Industroyer

Lennart Bader lennart.bader@fkie.fraunhofer.de

