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+ More secure
+ Based on a PAKE (Dragonfly1)

1 D. Harkins. Dragonfly Key Exchange. RFC 7664. 2015



Dragonfly / SAE - A Balanced PAKE

Alice

Verify cB

Bob

Verify cA

idArA, mA = rand(2, . . ., q-1)
sA = rA + mA mod q

P = pwd_conv(pwd, idA, idB)
QA = -mAP

Commit(sA, QA)

kck || mk = compute_keys(rB, P, sA, QA)

idB

rB,mB = rand(2,. . .,q-1)
sB = rB + mB mod q

P = pwd_conv(pwd, idA, idB)
QB = -mBP

Commit(sB, QB)

kck || mk = compute_keys(rB, P, sA, QA)

3/12

 * Dragonfly == SAE in WPA3
 * Balanced, looks somewhat like an ECDH, with the password beign used as the base point
 * Ephemeral random scalars
 * Secret in red 
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 * Key part here, the password/identities are converted into a point, the public keyshare is computed from there
 * Following exchange is pretty standard for a key exchange 
 * We want to focus on the password conversion part, as we will be operating on low entropy values, and may leak information 
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... But Still not Bulletproof
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today2018 2019 2020
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attacks

Dragonblood is Still Leaking2

SAE-PT

• Weird choice of password conversion method
• Probabilistic
• Difficult to implement securely

• Concerned were raised... and confirmed

4/121 M. Vanhoef and E. Ronen. Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P’20

2 D. De Almeida Braga et al Dragonblood is Still Leaking: Practical Cache-based Side-Channel in the Wild. In ACSAC ’20
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 * The works I am about to present come a bit after.
 * First, ACSAC, build upon the cache-attack presented at S&P, with improved leakage and efficiency
 



... But Still not Bulletproof

WPA3

today2018 2019 2020

Dragonblood1

attacks

Dragonblood is Still Leaking2

SAE-PT

• Better password conversion (SSWU)
• Deterministic
• Straightforward constant-time implementation

• !△ Not backward compatible

4/121 M. Vanhoef and E. Ronen. Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P’20
2 D. De Almeida Braga et al Dragonblood is Still Leaking: Practical Cache-based Side-Channel in the Wild. In ACSAC ’20

 * Upgrade with a new mode, that relies on another method to convert the password: deterministic with a straightforward workflow.
 * Finally the large literature around hashing to ellptic curve starts to pay off 



Attack Workflow
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Offline dictionary
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 * Varies with from one implementation to the other, 
 * Choose a technique, and the instructions/data to spy on
 * May be noisy -> amount of info is not a relevant metric
 * Instead we use S2N ratio: on average, how many bits are leaked with 1 measurement?
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Spying/Data Acquisition

• Implementation specific
• Usually noisy measurement

Comparison metric: Signal to Noise ratio

 * Varies with from one implementation to the other, 
 * Choose a technique, and the instructions/data to spy on
 * May be noisy -> amount of info is not a relevant metric
 * Instead we use S2N ratio: on average, how many bits are leaked with 1 measurement?
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Offline Dictionary Attack

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.
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Offline Dictionary Attack

H(secret) = 10...

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.
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Offline Dictionary Attack

x H(x)

secret 10..

pwd1

01..

pwd2

10..

pwd3

11..

...

...

pwdn

10..

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.
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Offline Dictionary Attack

x H(x || pub1) H(x || pub2)

secret 10.. 00..

pwd1 01.. X
pwd2 10.. 00..
pwd3 11.. X
... ... ...
pwdn 10.. 11..

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
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 * With his approach in mind, let's look at the leaky password conversion method. 



Looking Under the Hood

We mostly analyzed Wi-Fi daemons...

... what about their dependencies, like crypto libraries?
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Looking Under the Hood

def set_compressed_point(x, fmt, ec)

• Branching on the compression format
• Affects SAE (legacy version)
• 1-bit leakage
• Narrow scope outside of Dragonfly

def bin2bn(buf, buf_length)

• Skipping leading 0 bytes
• Affects both SAE and SAE-PT
• 8-bit leakage with proba 1/256
• Wide scope (targets utility
function)

Affected projects:

• hostap/wpa_supplicant with OpenSSL/WolfSSL
• iwd with ell
• FreeRadius with OpenSSL
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”Obviously” Vulnerable, yet Difficult to Exploit

• Very few conditional instructions (one cache line or less)
• Many false positives with ”vanilla” Flush+Reload
• Using existing attack to create a new distinguisher

Abuse prefetching behaviors to create a new distinguisher!

8/12



Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

A

B

9/12

 * set compressed point coordinate: compute one of the two potential y, then choose which one to use based on the compression format. 
 * compression format is secret, so is y, learning if their parity is the same leaks information
 * Conditional instruction are in cache line A, cache line B contains instructions executed right after.
 * Classical F+R : spy on A, but in practice, instructions are fast, so we get false negative, cache line might be prefetched so we get false positive -> not very accurate.
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 * Monitor access to the following CL (B), and continuously flush A from the cache. Here, B will be loaded in the cache at some point anyway but
 * The idea is to make the victim prefetch B more time if they execute A, creating a distinguisher based on *how many times* we see a cache rather than if we see it at all.
 



Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

Very accurate distinguisher, with a better
spatial resolution!

S&P’20 ACSAC’20 This
0

0.1

0.2

0.3
A

B
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Sustainable patch for hostap

• Cryptographic libraries refused to patch
• Many other potential vulnerabilities (≈ 400)

Shall we replace them?

HaCl*: A Formally Verified Cryptographic Library1

• Memory-safety
• Functional correctness
• Secret independence

10/121 J-K. Zinzindohoué et al. HACL*: A Verified Modern Cryptographic Library. In CCS’17

 * We contacted affected project, suggesting patches. The lib refused, so we patched the wifi daemons.
 * We were a bit concerned by the library reaction, and observed more than 400 ct violation in the execution of the crypot code
 * Looked for an alternative
 



Sustainable patch for hostap

• Cryptographic libraries refused to patch
• Many other potential vulnerabilities (≈ 400)

Shall we replace them?

HaCl*: A Formally Verified Cryptographic Library1

• Memory-safety
• Functional correctness
• Secret independence

10/121 J-K. Zinzindohoué et al. HACL*: A Verified Modern Cryptographic Library. In CCS’17

 * HaCl*, written in F*, generated C code that has been formally verified to comply with the following property.
 * Nice performance, also not as good as optimized assembly.
 * Engeneering effort to impelment some optimizations, expose additional API, and add a couple methods needed to implement Dragonfly
 



Fixing hostap1

wpa_supplicant

event
loop

wpa_cli GUI  frontend

driver events

con�guration

driver i/f

WPA
state machine 

l2_packets

driver i/f

EAPOL
state machine 

EAP
state machine 

EAP methods 

crypto TLS

kernel network device driver

crypto/
...
crypto.h
crypto_mbedtls.c
crypto_openssl.c
crypto_wolfssl.c
...

11/121 Thank you Alexandre Sanchez for helping with the patch integration

 * Goal is to include it in hostap, as an alternative cryptographic provider.
 * Project organized in module, crypto is one of them
 * Common API in .h, mapping API<->lib in .c
 * Implement this mapping + work to integrate it in hostap, with the help of an engenneer. 
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Impact

A New Attack

• Dictionary attack (SAE/SAE-PT)
• Improved signal-to-noise ratio!
• First side-channel in SAE-PT
(supposed to be ct by design)

• New generic gadget
• Potential impact on many
low-level arithmetic functions

A Better Defense

• 3 Security patches (hostap, iwd,
FreeRadius)

• Formally verified crypto
implementation (HaCl*)

• Benefit from HaCl*’s team support

Material available at
• https://gitlab.inria.fr/ddealmei/artifact_dragondoom
• https://gitlab.inria.fr/ddealmei/artifact_dragonstar

12/12

https://gitlab.inria.fr/ddealmei/artifact_dragondoom
https://gitlab.inria.fr/ddealmei/artifact_dragonstar
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Appendix



Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits:

flush (PDA)

flush (F+R)
reload (hit)
reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

 * set compressed point coordinate: compute one of the two potential y, then choose which one to use based on the compression format. 
 * compression format is secret, so is y, learning if their parity is the same leaks information
 * Conditional instruction are in cache line A, cache line B contains instructions executed right after.
 * Classical F+R : spy on A, but in practice, instructions are fast, so we get false negative, cache line might be prefetched so we get false positive -> not very accurate.
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Attacker
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B

 * Monitor access to the following CL (B), and continuously flush A from the cache. Here, B will be loaded in the cache at some point anyway but
 * The idea is to make the victim prefetch B more time if they execute A, creating a distinguisher based on *how many times* we see a cache rather than if we see it at all.
 



Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 0

flush (PDA)

flush (F+R)
reload (hit)
reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits. 
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