
From Dragondoom to Dragonstar: Side-channel Attacks and Formally Verified

Implementation of WPA3 Dragonfly Handshake

Daniel De Almeida Braga1 , Natalia Kulatova2,3 , Mohamed Sabt1 , Pierre-Alain Fouque1 , Karthikeyan Bhargavan3

EuroS&P - July 5th , 2023

University of Rennes, CNRS, IRISA1
Mozilla2
INRIA, Paris3

Toward Secure Wi-Fi Protocols...

Client Access Point

WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2/12

Toward Secure Wi-Fi Protocols...

Client Access Point

WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2/12

Offline dictionary

attack

Toward Secure Wi-Fi Protocols...

Client Access Point

WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2/12

Offline dictionary

attack
KR
AC
K a
tta
ck

Toward Secure Wi-Fi Protocols...

Client Access Point

WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2/12

+ More secure
+ Based on a PAKE (Dragonfly1)

1 D. Harkins. Dragonfly Key Exchange. RFC 7664. 2015

Dragonfly / SAE - A Balanced PAKE

Alice

Verify cB

Bob

Verify cA

idArA, mA = rand(2, . . ., q-1)
sA = rA + mA mod q

P = pwd_conv(pwd, idA, idB)
QA = -mAP

Commit(sA, QA)

kck || mk = compute_keys(rB, P, sA, QA)

idB

rB,mB = rand(2,. . .,q-1)
sB = rB + mB mod q

P = pwd_conv(pwd, idA, idB)
QB = -mBP

Commit(sB, QB)

kck || mk = compute_keys(rB, P, sA, QA)

3/12

 * Dragonfly == SAE in WPA3
 * Balanced, looks somewhat like an ECDH, with the password beign used as the base point
 * Ephemeral random scalars
 * Secret in red

Dragonfly / SAE - A Balanced PAKE

Alice

Verify cB

Bob

Verify cA

idArA, mA = rand(2, . . ., q-1)
sA = rA + mA mod q

P = pwd_conv(pwd, idA, idB)
QA = -mAP

Commit(sA, QA)

kck || mk = compute_keys(rB, P, sA, QA)

idB

rB,mB = rand(2,. . .,q-1)
sB = rB + mB mod q

P = pwd_conv(pwd, idA, idB)
QB = -mBP

Commit(sB, QB)

kck || mk = compute_keys(rB, P, sA, QA)

3/12

 * Key part here, the password/identities are converted into a point, the public keyshare is computed from there
 * Following exchange is pretty standard for a key exchange
 * We want to focus on the password conversion part, as we will be operating on low entropy values, and may leak information

Dragonfly / SAE - A Balanced PAKE

Alice

Verify cB

Bob

Verify cA

idArA, mA = rand(2, . . ., q-1)
sA = rA + mA mod q

P = pwd_conv(pwd, idA, idB)
QA = -mAP

Commit(sA, QA)

kck || mk = compute_keys(rA, P, sB, QB)

ConfirmA

idB

rB,mB = rand(2,. . .,q-1)
sB = rB + mB mod q

P = pwd_conv(pwd, idA, idB)
QB = -mBP

Commit(sB, QB)

kck || mk = compute_keys(rB, P, sA, QA)

ConfirmB

3/12

 * Key part here, the password/identities are converted into a point, the public keyshare is computed from there
 * Following exchange is pretty standard for a key exchange
 * We want to focus on the password conversion part, as we will be operating on low entropy values, and may leak information

Dragonfly / SAE - A Balanced PAKE

Alice

Verify cB

Bob

Verify cA

idArA, mA = rand(2, . . ., q-1)
sA = rA + mA mod q

P = pwd_conv(pwd, idA, idB)
QA = -mAP

Commit(sA, QA)

kck || mk = compute_keys(rA, P, sB, QB)

ConfirmA

idB

rB,mB = rand(2,. . .,q-1)
sB = rB + mB mod q

P = pwd_conv(pwd, idA, idB)
QB = -mBP

Commit(sB, QB)

kck || mk = compute_keys(rB, P, sA, QA)

ConfirmB

3/12

 * Key part here, the password/identities are converted into a point, the public keyshare is computed from there
 * Following exchange is pretty standard for a key exchange
 * We want to focus on the password conversion part, as we will be operating on low entropy values, and may leak information

... But Still not Bulletproof

WPA3

today2018 2019 2020

Dragonblood1

attacks

Dragonblood is Still Leaking2

SAE-PT

• Weird choice of password conversion method
• Probabilistic
• Difficult to implement securely

• Concerned were raised... and confirmed

4/121 M. Vanhoef and E. Ronen. Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P’20

2 D. De Almeida Braga et al Dragonblood is Still Leaking: Practical Cache-based Side-Channel in the Wild. In ACSAC ’20

... But Still not Bulletproof

WPA3

today2018 2019 2020

Dragonblood1

attacks

Dragonblood is Still Leaking2

SAE-PT

• Weird choice of password conversion method
• Probabilistic
• Difficult to implement securely

• Concerned were raised... and confirmed

4/121 M. Vanhoef and E. Ronen. Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P’20
2 D. De Almeida Braga et al Dragonblood is Still Leaking: Practical Cache-based Side-Channel in the Wild. In ACSAC ’20

 * The works I am about to present come a bit after.
 * First, ACSAC, build upon the cache-attack presented at S&P, with improved leakage and efficiency

... But Still not Bulletproof

WPA3

today2018 2019 2020

Dragonblood1

attacks

Dragonblood is Still Leaking2

SAE-PT

• Better password conversion (SSWU)
• Deterministic
• Straightforward constant-time implementation

• !△ Not backward compatible

4/121 M. Vanhoef and E. Ronen. Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P’20
2 D. De Almeida Braga et al Dragonblood is Still Leaking: Practical Cache-based Side-Channel in the Wild. In ACSAC ’20

 * Upgrade with a new mode, that relies on another method to convert the password: deterministic with a straightforward workflow.
 * Finally the large literature around hashing to ellptic curve starts to pay off

Attack Workflow

Access Point

Victim

WPA3 (SAE)

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

5/12

 * Varies with from one implementation to the other,
 * Choose a technique, and the instructions/data to spy on
 * May be noisy -> amount of info is not a relevant metric
 * Instead we use S2N ratio: on average, how many bits are leaked with 1 measurement?

Attack Workflow

Access Point

Victim

WPA3 (SAE)

Spy process

Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

5/12

 * Varies with from one implementation to the other,
 * Choose a technique, and the instructions/data to spy on
 * May be noisy -> amount of info is not a relevant metric
 * Instead we use S2N ratio: on average, how many bits are leaked with 1 measurement?

Attack Workflow

Rogue AP

Victim

WPA3 (SAE)

Spy process

Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

5/12

 * Varies with from one implementation to the other,
 * Choose a technique, and the instructions/data to spy on
 * May be noisy -> amount of info is not a relevant metric
 * Instead we use S2N ratio: on average, how many bits are leaked with 1 measurement?

Attack Workflow

Rogue AP

Victim

WPA3 (SAE)

Spy process

Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

5/12

Spying/Data Acquisition

• Implementation specific
• Usually noisy measurement

Comparison metric: Signal to Noise ratio

 * Varies with from one implementation to the other,
 * Choose a technique, and the instructions/data to spy on
 * May be noisy -> amount of info is not a relevant metric
 * Instead we use S2N ratio: on average, how many bits are leaked with 1 measurement?

Attack Workflow

Rogue AP

Victim

WPA3 (SAE)

Spy process

Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

5/12

Attack Workflow

Rogue AP

Victim

WPA3 (SAE)

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

5/12

Offline Dictionary Attack

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.

Attack Workflow

Rogue AP

Victim

WPA3 (SAE)

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

5/12

Offline Dictionary Attack

H(secret) = 10...

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.

Attack Workflow

Rogue AP

Victim

WPA3 (SAE)

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

5/12

Offline Dictionary Attack

x H(x)

secret 10..

pwd1

01..

pwd2

10..

pwd3

11..

...

...

pwdn

10..

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.

Attack Workflow

Rogue AP

Victim

WPA3 (SAE)

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

5/12

Offline Dictionary Attack

x H(x)

secret 10..

pwd1 01..
pwd2 10..
pwd3 11..
... ...
pwdn 10..

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.

Attack Workflow

Rogue AP

Victim

WPA3 (SAE)

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

5/12

Offline Dictionary Attack

x H(x)

secret 10..

pwd1 01..
pwd2 10..
pwd3 11..
... ...
pwdn 10..

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.

Attack Workflow

Rogue AP

Victim

WPA3 (SAE)

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

5/12

Offline Dictionary Attack

x H(x || pub1) H(x || pub2)

secret 10.. 00..

pwd1 01.. X
pwd2 10.. 00..
pwd3 11.. X
...
pwdn 10.. 11..

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.

Attack Workflow

Rogue AP

Victim

WPA3 (SAE)

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

5/12

Offline Dictionary Attack

x H(x || pub1) H(x || pub2)

secret 10.. 00..

pwd1 01.. X
pwd2 10.. 00..
pwd3 11.. X
...
pwdn 10.. 11..

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.

Attack Workflow

Rogue AP

Victim

WPA3 (SAE)

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

5/12

 * With his approach in mind, let's look at the leaky password conversion method.

Looking Under the Hood

We mostly analyzed Wi-Fi daemons...

... what about their dependencies, like crypto libraries?

6/12

Looking Under the Hood

def set_compressed_point(x, fmt, ec)

• Branching on the compression format
• Affects SAE (legacy version)
• 1-bit leakage
• Narrow scope outside of Dragonfly

def bin2bn(buf, buf_length)

• Skipping leading 0 bytes
• Affects both SAE and SAE-PT
• 8-bit leakage with proba 1/256
• Wide scope (targets utility
function)

Affected projects:

• hostap/wpa_supplicant with OpenSSL/WolfSSL
• iwd with ell
• FreeRadius with OpenSSL

7/12

Looking Under the Hood

def set_compressed_point(x, fmt, ec)

• Branching on the compression format
• Affects SAE (legacy version)
• 1-bit leakage
• Narrow scope outside of Dragonfly

def bin2bn(buf, buf_length)

• Skipping leading 0 bytes
• Affects both SAE and SAE-PT
• 8-bit leakage with proba 1/256
• Wide scope (targets utility
function)

Affected projects:

• hostap/wpa_supplicant with OpenSSL/WolfSSL
• iwd with ell
• FreeRadius with OpenSSL

7/12

Looking Under the Hood

def set_compressed_point(x, fmt, ec)

• Branching on the compression format
• Affects SAE (legacy version)
• 1-bit leakage
• Narrow scope outside of Dragonfly

def bin2bn(buf, buf_length)

• Skipping leading 0 bytes
• Affects both SAE and SAE-PT
• 8-bit leakage with proba 1/256
• Wide scope (targets utility
function)

Affected projects:

• hostap/wpa_supplicant with OpenSSL/WolfSSL
• iwd with ell
• FreeRadius with OpenSSL

7/12

”Obviously” Vulnerable, yet Difficult to Exploit

• Very few conditional instructions (one cache line or less)
• Many false positives with ”vanilla” Flush+Reload
• Using existing attack to create a new distinguisher

Abuse prefetching behaviors to create a new distinguisher!

8/12

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

A

B

9/12

 * set compressed point coordinate: compute one of the two potential y, then choose which one to use based on the compression format.
 * compression format is secret, so is y, learning if their parity is the same leaks information
 * Conditional instruction are in cache line A, cache line B contains instructions executed right after.
 * Classical F+R : spy on A, but in practice, instructions are fast, so we get false negative, cache line might be prefetched so we get false positive -> not very accurate.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

A

B

9/12

 * Monitor access to the following CL (B), and continuously flush A from the cache. Here, B will be loaded in the cache at some point anyway but
 * The idea is to make the victim prefetch B more time if they execute A, creating a distinguisher based on *how many times* we see a cache rather than if we see it at all.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

Very accurate distinguisher, with a better
spatial resolution!

S&P’20 ACSAC’20 This
0

0.1

0.2

0.3
A

B

9/12

Sustainable patch for hostap

• Cryptographic libraries refused to patch
• Many other potential vulnerabilities (≈ 400)

Shall we replace them?

HaCl*: A Formally Verified Cryptographic Library1

• Memory-safety
• Functional correctness
• Secret independence

10/121 J-K. Zinzindohoué et al. HACL*: A Verified Modern Cryptographic Library. In CCS’17

 * We contacted affected project, suggesting patches. The lib refused, so we patched the wifi daemons.
 * We were a bit concerned by the library reaction, and observed more than 400 ct violation in the execution of the crypot code
 * Looked for an alternative

Sustainable patch for hostap

• Cryptographic libraries refused to patch
• Many other potential vulnerabilities (≈ 400)

Shall we replace them?

HaCl*: A Formally Verified Cryptographic Library1

• Memory-safety
• Functional correctness
• Secret independence

10/121 J-K. Zinzindohoué et al. HACL*: A Verified Modern Cryptographic Library. In CCS’17

 * HaCl*, written in F*, generated C code that has been formally verified to comply with the following property.
 * Nice performance, also not as good as optimized assembly.
 * Engeneering effort to impelment some optimizations, expose additional API, and add a couple methods needed to implement Dragonfly

Fixing hostap1

wpa_supplicant

event
loop

wpa_cli GUI frontend

driver events

con�guration

driver i/f

WPA
state machine

l2_packets

driver i/f

EAPOL
state machine

EAP
state machine

EAP methods

crypto TLS

kernel network device driver

crypto/
...
crypto.h
crypto_mbedtls.c
crypto_openssl.c
crypto_wolfssl.c
...

11/121 Thank you Alexandre Sanchez for helping with the patch integration

 * Goal is to include it in hostap, as an alternative cryptographic provider.
 * Project organized in module, crypto is one of them
 * Common API in .h, mapping API<->lib in .c
 * Implement this mapping + work to integrate it in hostap, with the help of an engenneer.

Fixing hostap1

WPA
state machine

EAPOL
state machine

EAP
state machine

EAP methods

crypto

crypto/
...
crypto.h
crypto_mbedtls.c
crypto_openssl.c
crypto_wolfssl.c
...

11/121 Thank you Alexandre Sanchez for helping with the patch integration

 * Goal is to include it in hostap, as an alternative cryptographic provider.
 * Project organized in module, crypto is one of them
 * Common API in .h, mapping API<->lib in .c
 * Implement this mapping + work to integrate it in hostap, with the help of an engenneer.

Fixing hostap1

WPA
state machine

EAPOL
state machine

EAP
state machine

EAP methods

crypto

crypto/
...
crypto.h
crypto_mbedtls.c
crypto_openssl.c
crypto_wolfssl.c
...

11/121 Thank you Alexandre Sanchez for helping with the patch integration

 * Goal is to include it in hostap, as an alternative cryptographic provider.
 * Project organized in module, crypto is one of them
 * Common API in .h, mapping API<->lib in .c
 * Implement this mapping + work to integrate it in hostap, with the help of an engenneer.

Fixing hostap1

WPA
state machine

EAPOL
state machine

EAP
state machine

EAP methods

crypto

crypto/
...
crypto.h
crypto_hacl.c
crypto_mbedtls.c
crypto_openssl.c
crypto_wolfssl.c
...

11/121 Thank you Alexandre Sanchez for helping with the patch integration

 * Goal is to include it in hostap, as an alternative cryptographic provider.
 * Project organized in module, crypto is one of them
 * Common API in .h, mapping API<->lib in .c
 * Implement this mapping + work to integrate it in hostap, with the help of an engenneer.

Impact

A New Attack

• Dictionary attack (SAE/SAE-PT)
• Improved signal-to-noise ratio!
• First side-channel in SAE-PT
(supposed to be ct by design)

• New generic gadget
• Potential impact on many
low-level arithmetic functions

A Better Defense

• 3 Security patches (hostap, iwd,
FreeRadius)

• Formally verified crypto
implementation (HaCl*)

• Benefit from HaCl*’s team support

Material available at
• https://gitlab.inria.fr/ddealmei/artifact_dragondoom
• https://gitlab.inria.fr/ddealmei/artifact_dragonstar

12/12

https://gitlab.inria.fr/ddealmei/artifact_dragondoom
https://gitlab.inria.fr/ddealmei/artifact_dragonstar

Impact

A New Attack

• Dictionary attack (SAE/SAE-PT)
• Improved signal-to-noise ratio!
• First side-channel in SAE-PT
(supposed to be ct by design)

• New generic gadget
• Potential impact on many
low-level arithmetic functions

A Better Defense

• 3 Security patches (hostap, iwd,
FreeRadius)

• Formally verified crypto
implementation (HaCl*)

• Benefit from HaCl*’s team support

Material available at
• https://gitlab.inria.fr/ddealmei/artifact_dragondoom
• https://gitlab.inria.fr/ddealmei/artifact_dragonstar

12/12

https://gitlab.inria.fr/ddealmei/artifact_dragondoom
https://gitlab.inria.fr/ddealmei/artifact_dragonstar

Impact

A New Attack

• Dictionary attack (SAE/SAE-PT)
• Improved signal-to-noise ratio!
• First side-channel in SAE-PT
(supposed to be ct by design)

• New generic gadget
• Potential impact on many
low-level arithmetic functions

A Better Defense

• 3 Security patches (hostap, iwd,
FreeRadius)

• Formally verified crypto
implementation (HaCl*)

• Benefit from HaCl*’s team support

Material available at
• https://gitlab.inria.fr/ddealmei/artifact_dragondoom
• https://gitlab.inria.fr/ddealmei/artifact_dragonstar

12/12

https://gitlab.inria.fr/ddealmei/artifact_dragondoom
https://gitlab.inria.fr/ddealmei/artifact_dragonstar

Appendix

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits:

flush (PDA)

flush (F+R)
reload (hit)
reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

 * set compressed point coordinate: compute one of the two potential y, then choose which one to use based on the compression format.
 * compression format is secret, so is y, learning if their parity is the same leaks information
 * Conditional instruction are in cache line A, cache line B contains instructions executed right after.
 * Classical F+R : spy on A, but in practice, instructions are fast, so we get false negative, cache line might be prefetched so we get false positive -> not very accurate.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits:

flush (PDA)

flush (F+R)
reload (hit)
reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

 * Monitor access to the following CL (B), and continuously flush A from the cache. Here, B will be loaded in the cache at some point anyway but
 * The idea is to make the victim prefetch B more time if they execute A, creating a distinguisher based on *how many times* we see a cache rather than if we see it at all.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 0

flush (PDA)

flush (F+R)
reload (hit)
reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 0

flush (PDA)

flush (F+R)

reload (hit)
reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 0

flush (PDA)

flush (F+R)
reload (hit)
reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 0

flush (PDA)

flush (F+R)
reload (hit)

reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 0

flush (PDA)

flush (F+R)
reload (hit)
reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

−→

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 1

flush (PDA)

flush (F+R)

reload (hit)

reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

−→

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 1

flush (PDA)

flush (F+R)

reload (hit)
reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

−→

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 1

flush (PDA)

flush (F+R)
reload (hit)
reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

−→

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 2

flush (PDA)

flush (F+R)

reload (hit)

reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

−→

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 2

flush (PDA)

flush (F+R)

reload (hit)
reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

−→

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 2

flush (PDA)

flush (F+R)
reload (hit)
reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

−→

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 3

flush (PDA)

flush (F+R)

reload (hit)

reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

−→

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 3

flush (PDA)

flush (F+R)

reload (hit)
reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

−→

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 3

flush (PDA)

flush (F+R)
reload (hit)
reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B−→

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 4

flush (PDA)

flush (F+R)

reload (hit)

reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B−→

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

nb hits: 4

flush (PDA)

flush (F+R)

reload (hit)
reload (miss)

pref
etch

pre
fetc

h

CPU cache

cond (A)

probe (B)

Victim

cond (A)

probe (B)

Attacker

A

B

−→

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

.

if y = fmt mod 2:

y = ec.p - y

.

P = init_point(x, y, ec)

[...]

.

return P

Very accurate distinguisher, with a better
spatial resolution!

S&P’20 ACSAC’20 This
0

0.1

0.2

0.3

A

B

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

	Appendix
	Appendix

